Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Ford 2011 6.7L Power Stroke® Diesel Engine Combustion System Development

2011-04-12
2011-01-0415
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbo Diesel, and code named "Scorpion," was designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. The combustion system includes the piston bowl, swirl level, number of nozzle holes, fuel spray angle, nozzle tip protrusion, nozzle hydraulic flow, and nozzle-hole taper. While all of these parameters could be explored through extensive hardware testing, 3-D CFD studies were utilized to quickly screen two bowl concepts and assess their sensitivities to a few of the other parameters. The two most promising bowl concepts were built into single-cylinder engines for optimization of the rest of the combustion system parameters. 1-D CFD models were used to set boundary conditions at intake valve closure for 3-D CFD which was used for the closed-cycle portion of the simulation.
Technical Paper

Design of an Integral Perforated Manifold, Muffler, and Catalyst

2001-03-05
2001-01-0222
The development of an integrated Perforated Manifold, Muffler, and Catalyst (PMMC) for an automotive engine exhaust system is described. The design aims to reduce tailpipe emissions and improve engine power while maintaining low sound output levels from the exhaust. The initial design, based on simplified acoustic and fluid dynamic considerations, is further refined through the use of a computational approach and bench tests. A final prototype is fabricated and evaluated using fired engine dynamometer experiments. The results confirm earlier analytical estimates for improved engine power and reductions of emissions and noise levels.
Technical Paper

Automotive Obstacle Detection Systems: a Survey of Design Requirements and Vehicle Integration Issues

1998-10-19
98C021
Obstacle detection technology has made significant progress in the last five years in the important product areas of quality, performance and affordability. Ford Motor Company's market research indicates that our customers are very interested in new safety features. Drivers consider obstacle detection and collision warning technology as the next breakthrough in safety technology. Ford recognizes the importance of moving from the collision mitigation to the collision avoidance paradigm. Fortunately, the first step in collision avoidance can be taken by equipping the vehicle with reliable and affordable obstacle detection sensors
Journal Article

The Underlying Physics and Chemistry behind Fuel Sensitivity

2010-04-12
2010-01-0617
Recent studies have shown that for a given RON, fuels with a higher sensitivity (RON-MON) tend to have better antiknock performance at most knock-limited conditions in modern engines. The underlying chemistry behind fuel sensitivity was therefore investigated to understand why this trend occurs. Chemical kinetic models were used to study fuels of varying sensitivities; in particular their autoignition delay times and chemical intermediates were compared. As is well known, non-sensitive fuels tend to be paraffins, while the higher sensitivity fuels tend to be olefins, aromatics, diolefins, napthenes, and alcohols. A more exact relationship between sensitivity and the fuel's chemical structure was not found to be apparent. High sensitivity fuels can have vastly different chemical structures. The results showed that the autoignition delay time (τ) behaved differently at different temperatures. At temperatures below 775 K and above 900 K, τ has a strong temperature dependence.
Journal Article

Evaluation of DAMAGE Algorithm in Frontal Crashes

2024-04-17
2023-22-0006
With the current trend of including the evaluation of the risk of brain injuries in vehicle crashes due to rotational kinematics of the head, two injury criteria have been introduced since 2013 – BrIC and DAMAGE. BrIC was developed by NHTSA in 2013 and was suggested for inclusion in the US NCAP for frontal and side crashes. DAMAGE has been developed by UVa under the sponsorship of JAMA and JARI and has been accepted tentatively by the EuroNCAP. Although BrIC in US crash testing is known and reported, DAMAGE in tests of the US fleet is relatively unknown. The current paper will report on DAMAGE in NCAP-like tests and potential future frontal crash tests involving substantial rotation about the three axes of occupant heads. Distribution of DAMAGE of three-point belted occupants without airbags will also be discussed. Prediction of brain injury risks from the tests have been compared to the risks in the real world.
X